PHYSICAL REVIEW E 67, 066611 (2003
Tunneling as a stochastic process: A path-integral model for microwave experiments
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Delay time results obtained in microwave experiments at frequencies above and below the cutoff frequency
of different waveguide sections are interpreted on the basis of wave propagation in the presence of dissipative
effects. Kac’s original suggestion was the starting point for the formulation of a stochastic model, which has
now been substantially improved, also in relation to the transition-elements theory of Feynman-Hibbs. In this
way, an approach to the problem is provided, which is completely distinct from the ones formulated elsewhere.
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Since the pioneering work by Kac, who gave a path-of (time) " [7] [see Eq.(1) in Ref.[6]]. In a more refined
integral description of the telegrapher’s equations and of théreatment of the delay time, by considering a wave signal of
underlying Poisson random wd]k], there has been continu- the type sin—ut), we found essential confirmation of these
ing interest in this kind of approach. DeWitt-Morette and results, except in the case ok®?<a?, where the delay
Foong[2] provided a solution to the telegrapher’s equationswas found to be independent of the lendtlof the barrier,
in terms of ordinary integrals, obtaining also the distributionswhile in the other two cases ¢>a? andv?<0) the delay
of the first-passage time for the Poisson random Walkin rightly depended ol [8]. For these reasons, the search for a
the meantime, a relation was established between quantumore refined model seemed to be worthwhile.
relativistic motions and the telegrapher’s equations which , if According to Ref.[2], the solution of the telegrapher’s
analytically continued, results in the Dirac equatfdhn and  equation can be expressed by the integral
in the Klein-Gordon equatioft]. Indeed, along these lines,
it was possible to derive a simplified model for tunneliiog o
traversal time that accounts for the propagation of a pulse F(x.t)= fﬁw[aqﬁ(x,r)+,8¢(x,—r)]g(t,r)dr, .y
either above or below the cutoff frequency of a waveguide,

which corresponds to a rectangular quantum-mechanical ba\Where #(x,r) is a solution of the wave equation, without

rier [6]. . . issipation, andv and B are arbitrary mixing coefficients, so
The purpose of the present work is to report an improved, ., a+B=1. The boundary conditions are=(x,0)
version of a model, also based on the telegrapher’s equation, $(x.,0) and. OF10t) o= (a— B) (3] 3t),_o. The t\;vo-
- ) t=0" t=0-

that is capable of giving a reasonable description of the Pre; riable functiong(t,r), with —t<r=t,is the density distri-

viously obtained and more recent experimental results, Obﬁution of arandomized time (t is the normal timgwhich

tameql in the microwave range. A _demonst_ratlon_ of the Stotends asymptotically, far>r, [disregarding a contribution
chastic nature of the process is given, which reinforces the —at :

i . . ; of the typee™ #'6(t—r)], to a Gaussiar9]
previously made assumptions for which, further experimen-

tal evidence is now obtained. 5

The essential issue of the model of Ref] can be sum- Ry exp( —ar

marized as follows. In the absence of dissipative effects, in a ’ 2t 2t

semiclassical approach the traversal time of a rectangular

barrier can be expressed as=L/|vy|, whereL is the length  wherea is the dissipative parameter entering the wave equa-

of the barrier and 4 the group velocity which, in the tunnel- tion. Thus, the standard deviation of H@) is given simply

ing region of the spectrurfor below the cutoff frequendyis by o= \t/a. The exact expression @f can be obtained as

imaginary. Taking dissipation into account simply produces ahe square root of the variance reported by &) in Ref.

shift of the peak ofrg from vy=0, or the cutoff frequency, [8], namely,

towards the higher frequencies by an amount that depends on

the dissipative parameter, thus entering the telegrapher’s t—r _\"? [t (1-e %f(3—e2y]"

equation, since this peak occursvét=a2. 0'=<—— 2) =l-— 5 1 ,
To be more precise, the delay time is roughly given by a 4a

L/w; 55 where forv?>a? w;=(v?—a?%?% and for 0 ©)

<v?<a?, wy,=(a?—v?)? for v2<0, wy=(v2+[v?|)¥2 _

This assumption is improper, however, since quargitgust ~ Wherer = (1/2a)[ 1—exp(-2at)]; for t>1/a, Eq.(3) tends to

be homogeneous wittw=27v, v being the frequency the simplified expression given above. The average time

(rather than withv), that is, botha and w have dimensions has to be interpreted as the fictitious time it would take a

: 2
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27 =t we obtainr=a ! It may be objected that this result
ar 1 “ holds true only fort>a~* while for smaller values of the
] exact expression af given by Eq.(3), which supplies val-
15 Vat ues sensibly smaller than the ones given by &g. should

be adopted. However, in the first approximation, we can as-
sumeAr,At=a"! to be a reasonable measure of the most
probable step size in time of the stochastic processes being
considered. The step size in space will be given Ay
=v(At,Ar)=v/a. This holds true both for classically al-
lowed processes and for classically forbidden ones, provided
that, according to thensatzof Ref. [9], the roles of the
variablest andr are exchanged when passing from classical
to tunneling motions. This satisfies the intuitive result of a
slowing down of the motion in the classical regime, while in
the tunneling one we have just the opposite behavior. This

FIG. 1. The curve of the standard deviationmultiplied bya  yeans that while for classically allowed motion the effective
(ao) in the plane &r,at) represents the border line of the half area id =1 and the t i it in th ft i
containing the paths with a probability 6§68%. The continuous space IS =vr an e true time 1§ in the case of tunne 1ing,

line, given byy/at, corresponds to the approximate distribution Eq. the effective space will be =vt and the true time will be.

(2), while the dashed line is given by the exact expres¢®nThe ~ Consequently, the traversal time for allowed processes is
straight liner =t represents processes without reversals and thgiven by[9]

dotted lines represent typical paths with reversals.

(2aL=2a<v), (4)

1 ( L
_ ti=—s=In| 1-2a—
particle to reach the average distahcevr if it was always 2a v
moving with velocityv, without reversal$1,2].

We can recall that Kac’s work basically consisted in dem-
onstrating that the telegrapher’s equation is equivalent to the
stochastic motion of a particle moving in a straight line, with
constant velocity, which suffers collisions that can reverse
its velocity with probabilityast, after each stepx, and

with continue in the same direction probability-hét. The . .
resulting paths are, therefore, of a zigzag checkerboand Note that both expressioitd) and(5) rightly tend toL/v for

type in the space-timex(t) plane consisting of segments a—0; the agreement V\ﬂth the simplified model of R is
with slope =1 for v=1 or, if we prefer, in the ((;t) plane _attained by taking @L=a (the_ di_mension of which is veloc-
for any v, sincex=vr [10]. Curve o(t) can be considered ity) as the measure of the dissipative effect.

the borderline of the half area containing these paths. More For 0<uv<a, the form of the traversal time was not en-
precisely, the probability of the path being inside~i$8%, visaged in Ref[9]; however, we can try to adopt the same
if the distribution is of a Gaussian tygseee Fig. L. We now  Eq. (4), properly continued to negative arguments, that is,
wish to estimate the typical extension of the path segments

while for the forbidden, or tunneling, processe the said
time will be given by[12]

t3= Zla(l e 23wy (y2<0). (5)

(or steps. ty= — —|In|1—2a=|+i(2k+1
The first indication was given in Rdf10] where, for rela- 2= 55|M a, *i( n
tivistic particles of mass, the time scale was found to be in ~
(0O<v<?2alL=a, k=0,1,2...). (6)

Compton wavelengths over the light velocity namely,At
=#/mc®. More precisely, in Ref[11] it was estimated that
the most probable step size is given simply by the akbie
Within the electromagnetic framework, this quantity should
become of the order of &/=1/27rv. However, we know that
the quantitymc®/4 is related to the dissipative parameter
(see below when the connection is established between 1
guantum relativistic motior(Dirac or Klein-Gordon equa- t,=———In
tion) and the telegrapher’s equatipf5]. This appears to be 2a
the most plausible connection for an estimate of the exten-

sion of average steps. In fact, even in considering the distriwvheref is an arbitrary numerical factor of the order of unity
bution functiong(r,t) in its simplified Gaussian forng2), ~ [13l- In Fig. 2 we show the three quantities, t,, andts

we find that the point of intersection of curegt) with the ~ normalized toL, taking 2aL.=a as an independent variable.
straight liner =t [the line corresponding té(t—r), which ~ The resulting curves represent a plausible candidate model
represents processes without reveﬂsajscurs forr=c0 for interpreting the experimental results. In fact, besides
=a L In fact, if we take the distribution in its Gaussian showing the typical peak aroura=v, already predicted by
approximation, for which[see Eq.(2)] r?=o?=t/a, for r the simplified model of Ref6], all the curves rightly depend

By retaining only the real parthe measured time is, of
course, reg] and making a further condition that such time
must be positive and comparable, for sufficiently lame
with t3, we have

f ~
+-— (O<v<2alL=a), (7)

2L 1
av 2v
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FIG. 2. Time delay as given by Eq#4), (5), and (7) for v :;“i
=0.1, normalized td., that is,t; , 5/L, as function ofa=2aL. 2 104
on L. The inclusion of the corrective last term in E) 5 13
allows for an almost exact connection fwith t; at suffi-
ciently large values oé& or, as will be seen, foo—0. For 0 . . T . .
this purpose, we must consider E¢¥), (5), and(7) as func- 93 94 95 96 97 98
tions of v?, or as functions of the frequency throughout the Frequency (GHz)

relation, which gives the square of the group velocity in a
rectangular waveguidel4]

{3

where the last member holds true for frequency values com- Before considering possible improvements to the model,

parable with the cutoff frequencyy. we want to estimate the step extension of the stochastic mo-
We are now in a position to compare the experimentation. According to the analysis previously made, the typical

results with the aforementioned model. The experimentafime step will be evaluated adt=a 1=(2L/c)/(alc).

data are taken from Reff15,16]; in part they are new, but  However, by considering the exact expression of the standard

were obtained by using the same technique as that of Refgeyiation of the distributiorg(r,t), given by Eq.(3), we

[15,16), to which we refer for technical details. In Fig. 3, we have a further reduction in the value (IL/2)/(a/c). With

report the measured values of delay obtained with three baf; P
rier lengthsL =10, 15, and 20 cm, which correspond to as[he parameter values reported in Fig. 3 for the three cases

. . . onsidered, we obtaidt=2.5, 5.4, and 12 ns, foc =10,
many waveguide sections with the same length and a cuto

& - 5, and 20 cm, respectively. As for the space steps, we have
frequencyro=9.495 GHz. From the peak positions we Cao multiply these values for the corresponding velocities

determine the values for the parameaéc, throughout EqQ.  \which depend on the frequency. Taking, for instance, the
(8) rewritten asa/c=(2Avo/vo)*?, whereAvo=v,—voiS  yalues corresponding to the peaks of the spectral dependence
the frequency shift of the peak positiog with respect to the  of the delay time, forAx=vAt we easily obtain the values
cutoff frequency. This means that while in a pure semiclaspx~5, 5.4, and 14.5 cm, fdr =10, 15, and 20 cm, respec-
sical model the singularitypeak is centered abv=vo, in tively. These values confirm the prediction of REF1] re-

this modified model, the peak is shifted from to an effec-  garding the persistence of the correlation in the direction of
tive cutoff frequencyv,, . By expressing the multiplying fac- - successive elementary steps: the grain of the process should
tor 1/2a in Eqgs.(4),(5), and(7) asL/a, we obtain the curves be of the order of = 1/27v which, for =10 GHz, turns
reported in Fig. 3, which give the first approximate descrip-out to best=16 ps andsx of a few mm[17]. These consid-

tion of the experimental data. The agreement is acceptable erations suggest a different way of interpreting the reported
the spectrum portion described ty{Eq. (7)], while itis less  data in tunneling, as well as in the allowed region, in the
satisfactory in the portions described by[Eq. (4)] andt, neighborhood of a cutoff frequency which is still in the vi-
[Eq. (5)]. cinity of the nominal cutoff one.

FIG. 3. Delay time resultgas obtained in different series of
measurementsrelative to subcutoff waveguide sections with
=10, 15, and 20 cm. The cutoff frequencyiig=9.495 GHz. The

(v—q) continuous lines are given by Eqggl), (5), and (7) multiplied by
=2 , (8) L/c, when considered as functions of the frequency, for selected
Vo values of the parameter'c.
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The zigzag behavior of the paths leads, for the case of
tunneling, to a simple relation betweekx and At, ex-
pressed by Eq(7.49 in Ref.[10]. It can be rewritten, by
identifying c with v, as

At(1>=imTC2<<&>2>, 9

v

Delay (ns)

where(1) is the propagator, and the symKgl- - ) indicates
that we are considering the transition element, a sort of av-
erage. Now, by assumingt(1)=(t)gs and Ax=L, and by
identifying, according to the analytic-continuation prescrip-
tion of Ref.[4], imc?/# with a, Eq. (9) becomeg18]

0 T T ; T . r )
94 945 95 955 96 965 97 0975

Frequency (GHz)
2
(t) —a E (10) FIG. 4. For the case df =15 cm(the set of data refers to the
R v ' most detailed examplethe curves of delay are given by E{.0)

with a=0.22 (ns) ?, below cutoff frequencyr,=9.56 GHz, and
where (t)r represents the real part of the average time, ay Eq.(11), with a=0.98 (ns)1, A=1.34, above cutoff frequency
result which confirms the one reported in Réf7], although  »,=9.5 GHz, a propagator value of-1, and an offzero of
it was obtained in a different way. ~2.8ns.
As for the observed behavior of the experimental results

in the allowed region, which is above a given cutoff fre- farameter values. Note that, in this case, the experimental

guency, its undulating shape suggests considering a diﬁereﬁ . .
expression, also obtained within the framework of the tran- ata are fitted by only two expressiofiather than three, as

sition elements of the path-integral thediy]. According to n the previous formulation pf the modelvhich can be also

the analysis of Refd.19,20, where different situations of derived from the same basic forml20,21.

decaying waves were considered, the traversal time can be 't S€éms, therefore, that we can safely conclude that the

expressed by the approximate relation, derived from Eq_syochastlc_ models con3|dered, espema@lly that of the last ver-

(7.69 in Ref.[10], as sion obtained according to the path-integral treatm@nt
which the stochastic motion can be reconducted as) yaek
capable of giving a satisfactory interpretation of the experi-

(1), (12) ments carried out in the microwave range.

We are quite aware that other interpretations have been
where the propagatdd) can be related to the attenuation of given (in the same region, as well as in other spectral re-
the waves, and is a quantity depending amandw. In our  gions [22]. Among these, the best interpretational scheme
case, we tried to use Eqd.0) and(11) to fit the experimen- remains, all things considered, the Hartman phase-time
tal data by takinga, A, and the cutoff frequency, as the model[23]. This is sometimes referred to as thartman
adjustable parameters. As we shall see, the required value$fect when invoked in order to explain superluminal effects
for a and v, are not the same when going from classicallythat can indeed be observed when the frequency is suffi-
allowed to classically forbidden processes; but this is notiently below the cutoff one. This type of behavior gave rise,
surprising, since there is no reason to believe that such quahowever, to some controversial interpretations, as can be
tities must be the same when the regime, in going from alfound also in the recent literatuf@4,25. Our approach re-
lowed to forbidden processes, is changed. mains completely distinct, based as it is on a hypothesis of

A more satisfactory description of the experimental data isstochasticity of motion(as a consequence of dissipafion
obtained, as shown in the example of Fig. 4, where theaccording to Kac’s earlyand well-foundedl suggestion on
curves are obtained from Eq&l0) and (11), for plausible the nature of wave propagation with dissipation.

Or= | 1-A s(zL
(D=7 cos 2a
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