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Tunneling as a stochastic process: A path-integral model for microwave experiments
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Delay time results obtained in microwave experiments at frequencies above and below the cutoff frequency
of different waveguide sections are interpreted on the basis of wave propagation in the presence of dissipative
effects. Kac’s original suggestion was the starting point for the formulation of a stochastic model, which has
now been substantially improved, also in relation to the transition-elements theory of Feynman-Hibbs. In this
way, an approach to the problem is provided, which is completely distinct from the ones formulated elsewhere.
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Since the pioneering work by Kac, who gave a pa
integral description of the telegrapher’s equations and of
underlying Poisson random walk@1#, there has been continu
ing interest in this kind of approach. DeWitt-Morette an
Foong@2# provided a solution to the telegrapher’s equatio
in terms of ordinary integrals, obtaining also the distributio
of the first-passage time for the Poisson random walk@3#. In
the meantime, a relation was established between quan
relativistic motions and the telegrapher’s equations which
analytically continued, results in the Dirac equation@4# and
in the Klein-Gordon equation@5#. Indeed, along these lines
it was possible to derive a simplified model for tunneling~or
traversal! time that accounts for the propagation of a pu
either above or below the cutoff frequency of a wavegui
which corresponds to a rectangular quantum-mechanical
rier @6#.

The purpose of the present work is to report an improv
version of a model, also based on the telegrapher’s equa
that is capable of giving a reasonable description of the p
viously obtained and more recent experimental results,
tained in the microwave range. A demonstration of the s
chastic nature of the process is given, which reinforces
previously made assumptions for which, further experim
tal evidence is now obtained.

The essential issue of the model of Ref.@6# can be sum-
marized as follows. In the absence of dissipative effects,
semiclassical approach the traversal time of a rectang
barrier can be expressed astS5L/uvgu, whereL is the length
of the barrier andvg the group velocity which, in the tunnel
ing region of the spectrum~or below the cutoff frequency!, is
imaginary. Taking dissipation into account simply produce
shift of the peak oftS from vg50, or the cutoff frequency
towards the higher frequencies by an amount that depend
the dissipative parametera, thus entering the telegrapher
equation, since this peak occurs atv25a2.

To be more precise, the delay time is roughly given
L/w1,2,3, where for v2.a2, w15(v22a2)1/2; and for 0
,v2,a2, w25(a22v2)1/2; for v2,0, w35(v21uv2u)1/2.
This assumption is improper, however, since quantitya must
be homogeneous withv52pn, n being the frequency
~rather than withv), that is, botha andv have dimensions
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of ~time! 21 @7# @see Eq.~1! in Ref. @6##. In a more refined
treatment of the delay time, by considering a wave signa
the type sin(x2vt), we found essential confirmation of thes
results, except in the case of 0,v2,a2, where the delay
was found to be independent of the lengthL of the barrier,
while in the other two cases (v2.a2 and v2,0) the delay
rightly depended onL @8#. For these reasons, the search fo
more refined model seemed to be worthwhile.

According to Ref.@2#, the solution of the telegrapher’
equation can be expressed by the integral

F~x,t !5E
2`

`

@af~x,r !1bf~x,2r !#g~ t,r !dr, ~1!

where f(x,r ) is a solution of the wave equation, withou
dissipation, anda andb are arbitrary mixing coefficients, so
that a1b51. The boundary conditions areF(x,0)
5f(x,0) and (]F/]t) t505(a2b)(]f/]t) t50. The two-
variable functiong(t,r ), with 2t,r<t, is the density distri-
bution of arandomized time r(t is the normal time! which,
tends asymptotically, fort@r , @disregarding ad contribution
of the typee2atd(t2r )], to a Gaussian@9#

g~ t,r !→A a

2pt
expS 2ar2

2t D , ~2!

wherea is the dissipative parameter entering the wave eq
tion. Thus, the standard deviation of Eq.~2! is given simply
by s5At/a. The exact expression ofs can be obtained as
the square root of the variance reported by Eq.~50! in Ref.
@8#, namely,

s5S t2 r̄

a
2 r̄ 2D 1/2

5F t

a
2

~12e22at!~32e22at!

4a2 G 1/2

,

~3!

wherer̄ 5(1/2a)@12exp(22at)#; for t@1/a, Eq.~3! tends to
the simplified expression given above. The average timr̄
has to be interpreted as the fictitious time it would take
©2003 The American Physical Society11-1
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particle to reach the average distanceL5v r̄ if it was always
moving with velocityv, without reversals@1,2#.

We can recall that Kac’s work basically consisted in de
onstrating that the telegrapher’s equation is equivalent to
stochastic motion of a particle moving in a straight line, w
constant velocityv, which suffers collisions that can revers
its velocity with probabilityadt, after each stepdx, and
with continue in the same direction probability 12adt. The
resulting paths are, therefore, of a zigzag~or checkerboard!
type in the space-time (x,t) plane consisting of segmen
with slope61 for v51 or, if we prefer, in the (r ,t) plane
for any v, sincex5vr @10#. Curves(t) can be considered
the borderline of the half area containing these paths. M
precisely, the probability of the path being inside is;68%,
if the distribution is of a Gaussian type~see Fig. 1!. We now
wish to estimate the typical extension of the path segme
~or steps!.

The first indication was given in Ref.@10# where, for rela-
tivistic particles of massm, the time scale was found to be i
Compton wavelengths over the light velocityc, namely,Dt
5\/mc2. More precisely, in Ref.@11# it was estimated tha
the most probable step size is given simply by the aboveDt.
Within the electromagnetic framework, this quantity shou
become of the order of 1/v51/2pn. However, we know that
the quantitymc2/\ is related to the dissipative parametera
~see below! when the connection is established betwe
quantum relativistic motion~Dirac or Klein-Gordon equa-
tion! and the telegrapher’s equation@4,5#. This appears to be
the most plausible connection for an estimate of the ex
sion of average steps. In fact, even in considering the di
bution functiong(r ,t) in its simplified Gaussian form~2!,
we find that the point of intersection of curves(t) with the
straight liner 5t @the line corresponding tod(t2r ), which
represents processes without reversals# occurs for r[s
5a21. In fact, if we take the distribution in its Gaussia
approximation, for which,@see Eq.~2!# r 25s25t/a, for r

FIG. 1. The curve of the standard deviations multiplied by a
(as) in the plane (ar,at) represents the border line of the half ar
containing the paths with a probability of;68%. The continuous
line, given byAat, corresponds to the approximate distribution E
~2!, while the dashed line is given by the exact expression~3!. The
straight line r 5t represents processes without reversals and
dotted lines represent typical paths with reversals.
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5t we obtain r 5a21. It may be objected that this resu
holds true only fort@a21 while for smaller values oft the
exact expression ofs given by Eq.~3!, which supplies val-
ues sensibly smaller than the ones given by Eq.~2!, should
be adopted. However, in the first approximation, we can
sumeDr ,Dt.a21 to be a reasonable measure of the m
probable step size in time of the stochastic processes b
considered. The step size in space will be given byDx
5v(Dt,Dr ).v/a. This holds true both for classically al
lowed processes and for classically forbidden ones, provi
that, according to theansatzof Ref. @9#, the roles of the
variablest andr are exchanged when passing from classi
to tunneling motions. This satisfies the intuitive result of
slowing down of the motion in the classical regime, while
the tunneling one we have just the opposite behavior. T
means that while for classically allowed motion the effecti
space isL5v r̄ and the true time ist, in the case of tunneling
the effective space will beL5vt and the true time will ber̄ .
Consequently, the traversal time for allowed processe
given by @9#

t152
1

2a
lnS 122a

L

v D ~2aL5ã,v !, ~4!

while for the forbidden, or tunneling, processe the s
time will be given by@12#

t35
1

2a
~12e22aL/v! ~v2,0!. ~5!

Note that both expressions~4! and~5! rightly tend toL/v for
a→0; the agreement with the simplified model of Ref.@6# is
attained by taking 2aL5ã ~the dimension of which is veloc
ity! as the measure of the dissipative effect.

For 0,v,ã, the form of the traversal time was not en
visaged in Ref.@9#; however, we can try to adopt the sam
Eq. ~4!, properly continued to negative arguments, that is

t252
1

2a F lnU122a
L

vU6 i ~2k11!nG
~0,v,2aL5ã, k50,1,2, . . . !. ~6!

By retaining only the real part~the measured time is, o
course, real!, and making a further condition that such tim
must be positive and comparable, for sufficiently largea,
with t3, we have

t252
1

2a
lnS 2a

L

v
21D1

f

2v
~0,v,2aL5ã!, ~7!

wheref is an arbitrary numerical factor of the order of uni
@13#. In Fig. 2 we show the three quantitiest1 , t2, and t3

normalized toL, taking 2aL5ã as an independent variable
The resulting curves represent a plausible candidate m
for interpreting the experimental results. In fact, besid
showing the typical peak aroundã5v, already predicted by
the simplified model of Ref.@6#, all the curves rightly depend
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TUNNELING AS A STOCHASTIC PROCESS: A PATH- . . . PHYSICAL REVIEW E 67, 066611 ~2003!
on L. The inclusion of the corrective last term in Eq.~7!
allows for an almost exact connection oft2 with t3 at suffi-
ciently large values ofã or, as will be seen, forv→0. For
this purpose, we must consider Eqs.~4!, ~5!, and~7! as func-
tions of v2, or as functions of the frequency throughout t
relation, which gives the square of the group velocity in
rectangular waveguide@14#

vg
2

c2
5F12S n0

n D 2G.2
~n2n0!

n0
, ~8!

where the last member holds true for frequency values c
parable with the cutoff frequencyn0.

We are now in a position to compare the experimen
results with the aforementioned model. The experimen
data are taken from Refs.@15,16#; in part they are new, bu
were obtained by using the same technique as that of R
@15,16#, to which we refer for technical details. In Fig. 3, w
report the measured values of delay obtained with three
rier lengthsL510, 15, and 20 cm, which correspond to
many waveguide sections with the same length and a cu
frequencyn059.495 GHz. From the peak positions we c
determine the values for the parameterã/c, throughout Eq.
~8! rewritten asa/c5(2Dn0 /n0)1/2, whereDn05np2n0 is
the frequency shift of the peak positionnp with respect to the
cutoff frequency. This means that while in a pure semicl
sical model the singularity~peak! is centered atn5n0, in
this modified model, the peak is shifted fromn0 to an effec-
tive cutoff frequencynp . By expressing the multiplying fac
tor 1/2a in Eqs.~4!,~5!, and~7! asL/ã, we obtain the curves
reported in Fig. 3, which give the first approximate descr
tion of the experimental data. The agreement is acceptab
the spectrum portion described byt2 @Eq. ~7!#, while it is less
satisfactory in the portions described byt1 @Eq. ~4!# and t3
@Eq. ~5!#.

FIG. 2. Time delay as given by Eqs.~4!, ~5!, and ~7! for v
50.1, normalized toL, that is,t1,2,3/L, as function ofã52aL.
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Before considering possible improvements to the mod
we want to estimate the step extension of the stochastic
tion. According to the analysis previously made, the typi
time step will be evaluated asDt.a215(2L/c)/(ã/c).
However, by considering the exact expression of the stand
deviation of the distributiong(r ,t), given by Eq.~3!, we
have a further reduction in the value (1.2L/c)/(ã/c). With
the parameter values reported in Fig. 3 for the three ca
considered, we obtainDt.2.5, 5.4, and 12 ns, forL510,
15, and 20 cm, respectively. As for the space steps, we h
to multiply these values for the corresponding velocit
which depend on the frequency. Taking, for instance,
values corresponding to the peaks of the spectral depend
of the delay time, forDx5vDt we easily obtain the value
Dx.5, 5.4, and 14.5 cm, forL510, 15, and 20 cm, respec
tively. These values confirm the prediction of Ref.@11# re-
garding the persistence of the correlation in the direction
successive elementary steps: the grain of the process sh
be of the order of 1/v51/2pn which, for n.10 GHz, turns
out to bedt.16 ps anddx of a few mm@17#. These consid-
erations suggest a different way of interpreting the repor
data in tunneling, as well as in the allowed region, in t
neighborhood of a cutoff frequency which is still in the v
cinity of the nominal cutoff one.

FIG. 3. Delay time results~as obtained in different series o
measurements! relative to subcutoff waveguide sections withL
510, 15, and 20 cm. The cutoff frequency isn059.495 GHz. The
continuous lines are given by Eqs.~4!, ~5!, and ~7! multiplied by
L/c, when considered as functions of the frequency, for selec

values of the parameterã/c.
1-3
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The zigzag behavior of the paths leads, for the case
tunneling, to a simple relation betweenDx and Dt, ex-
pressed by Eq.~7.49! in Ref. @10#. It can be rewritten, by
identifying c with v, as

Dt^1&5 i
mc2

\ K S Dx

v D 2L , ~9!

where^1& is the propagator, and the symbol^•••& indicates
that we are considering the transition element, a sort of
erage. Now, by assumingDt^1&5^t&R and Dx5L, and by
identifying, according to the analytic-continuation prescr
tion of Ref. @4#, imc2/\ with a, Eq. ~9! becomes@18#

^t&R5aK S L

v D 2L , ~10!

where ^t&R represents the real part of the average time
result which confirms the one reported in Ref.@17#, although
it was obtained in a different way.

As for the observed behavior of the experimental res
in the allowed region, which is above a given cutoff fr
quency, its undulating shape suggests considering a diffe
expression, also obtained within the framework of the tr
sition elements of the path-integral theory@10#. According to
the analysis of Refs.@19,20#, where different situations o
decaying waves were considered, the traversal time ca
expressed by the approximate relation, derived from
~7.69! in Ref. @10#, as

^t&R.
L

v F12A cosS 2a
L

v D G^1&, ~11!

where the propagator^1& can be related to the attenuation
the waves, andA is a quantity depending ona andv. In our
case, we tried to use Eqs.~10! and~11! to fit the experimen-
tal data by takinga, A, and the cutoff frequencyn0 as the
adjustable parameters. As we shall see, the required va
for a and n0 are not the same when going from classica
allowed to classically forbidden processes; but this is
surprising, since there is no reason to believe that such q
tities must be the same when the regime, in going from
lowed to forbidden processes, is changed.

A more satisfactory description of the experimental data
obtained, as shown in the example of Fig. 4, where
curves are obtained from Eqs.~10! and ~11!, for plausible
um
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parameter values. Note that, in this case, the experime
data are fitted by only two expressions~rather than three, as
in the previous formulation of the model!, which can be also
derived from the same basic formula@20,21#.

It seems, therefore, that we can safely conclude that
stochastic models considered, especially that of the last
sion obtained according to the path-integral treatment~to
which the stochastic motion can be reconducted as well!, are
capable of giving a satisfactory interpretation of the expe
ments carried out in the microwave range.

We are quite aware that other interpretations have b
given ~in the same region, as well as in other spectral
gions! @22#. Among these, the best interpretational sche
remains, all things considered, the Hartman phase-t
model @23#. This is sometimes referred to as theHartman
effect, when invoked in order to explain superluminal effec
that can indeed be observed when the frequency is s
ciently below the cutoff one. This type of behavior gave ris
however, to some controversial interpretations, as can
found also in the recent literature@24,25#. Our approach re-
mains completely distinct, based as it is on a hypothesis
stochasticity of motion~as a consequence of dissipation!,
according to Kac’s early~and well-founded! suggestion on
the nature of wave propagation with dissipation.

FIG. 4. For the case ofL515 cm ~the set of data refers to th
most detailed example!, the curves of delay are given by Eq.~10!
with a50.22 (ns)21, below cutoff frequencyn059.56 GHz, and
by Eq.~11!, with a50.98 (ns)21, A51.34, above cutoff frequency
n059.5 GHz, a propagator value of;1, and an offzero of
;2.8 ns.
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